

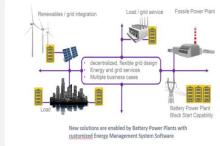
Environmental Concepts Exchange Association e.V.

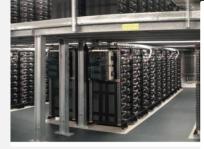
ECEXA Photovoltaic & Energy Storage Technology

PHOTOVOLTAIC & STORAGE TECHNOLOGY

Overview

PV – Fields of Application




PV – Advantages and Options

Energy Storage Systems

Project Examples and References

I. PV – Fields of Application & Examples

Intelligent PV solutions

- Renewable Energy Intelligent Solutions
- Offgrid/Microgrid solution
- PV as energy source
- Solar thermal+PV/household Photovoltaics & Biomass/ industry
- Austrian module producer

Intelligent Energy Solutions Examples

- Supermarket with PV
- School with Internet
- Energy Mix –Villages with >500 people

References

- Get FiT Uganda
- Solar farms
- Agriculture

Renewable Energy – Fast Solution

FAST SOLUTION

Off grid with PV or Wind mill Hot water by solar thermal

General solution

Dezentralized systems with combinations of all Renewable Energy forms like PV, wind, water, biomass, bio gas and other storage systems

Example

SUPER MARKET WITH PV

Supermarket with Photovoltaics for LED illumination, cooling and communciation (off grid)

School with Internet Connection

For higher qualification

By off grid PV solution

with Satellite communation

Example II – Energy Mixture

Villages with > 500 people

Solar thermal and PV for households Photovoltaics & Biomass for industry

Biomass for the night phase

Solar thermal

Heat/cooling

Photovoltaic

Electrical

Biomass

Heat/electrical

Offgrid / Microgrid Solution

Example

Figures

4500 inhabitants

Power consumption: 14 GWh/yr

Peak power 2.3 MW

Prior power solution

▶ 4.6 MW DG

▶ 800 KW windturbine

New power generation system

- ▶ 1.0 MW PV power plant
- ▶ 5.4 MW windturbines
- ▶ 1,2 MW NaS battery @ 8.5 MWh capacity
- ▶ 1.5 MW Li-Ion battery @1.5 MWh capacity
- Intelligent inverter and control units
- DG standby

Renewable coverage 65%
30 % excess of energy for desalination
+ CO2-certificates

References: Solar Farms

Bithuja – India: Solar Farm 5 MWp /2011

Ronchi & Tamagnina – Italy: Solar Farm1 + 0.7 MWp /

2010

Stizkov – Czech Republic: Solar Farm 8 MWp / 2009

La Roda – Spain: Solar Farm 8 MWp / 2008

Stuttgart – Germany: Rooftop 1 MWp / 2007

References - Agriculture

Agriculture PV Greenhouse Austria

Integrated Photovoltaic system

- Plant design
- PV module design aligned to greenhouse structure
- Site and construction management
- Equipment supplier management

Greenhouse Seba, Mureck Austria

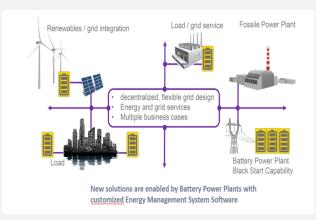
Austrian module producer

Technology Fully Automated

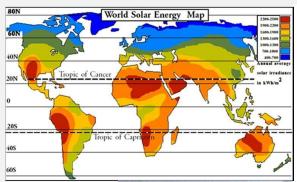
KIOTO SOLAR has a fully automated production line, certified after high quality EU standards

- o ISO 9001
- o ISO 14001
- o BS OHSAS
- o Extended snow load test
- o Extended hail test
- o Salt mist corrosion test
- o DLG ammonia test
- o UV long time stability test

Biggest PV power plant in Hungary with KIOTO SOLAR modules (18,5 MWp)



II. PV -Advantages and Options


PV Solutions from 1 MWp to 200 MWp

- Advantage of the technology for every country
- Photovoltaics as Energy source
- Requirements for a PV project
- Grid- Options through Battery Power Plant

Advantage of the technology for every country

PV module

PV cell

Produce

PV modules and panels + cells

and Solar themal products

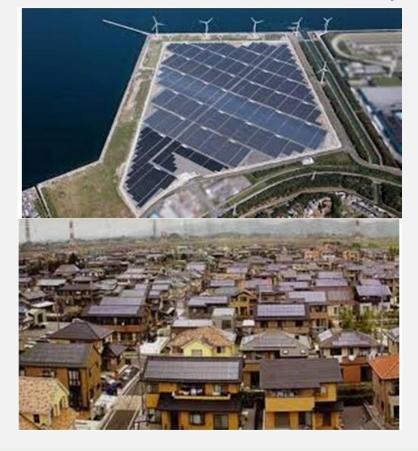
in every country

to secure the energy

for the future!

"Electricity decisions are political. They may be motivated by a push for climate/environmental gains, but they could also be driven by demands for social development, to create jobs, reduce costs, or to develop a manufacturing base".

Solar thermal

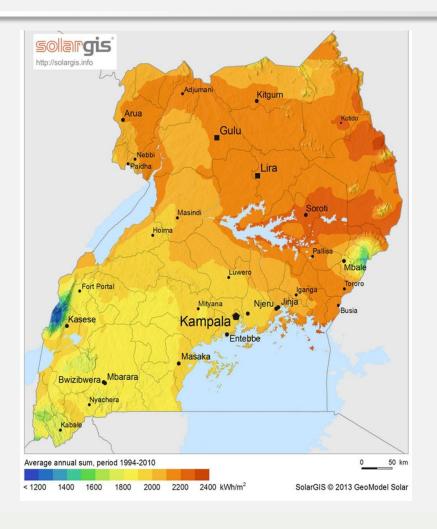


Technical Features & Advantages

Photovoltaics as Energy Source

- Wind and Photovoltaic energy will have the biggest growing rate in the next century
- ▶ Photovoltaic is the only technology without any maintenance in a life span of 25 year
- ▶ Photovoltaics has grid parity in a lot of countries
- ▶ No carbon emmission anymore !
- Photovoltaics combined with solar thermal for heating and/or cooling are the best solution for greater buildings - 10 year life time

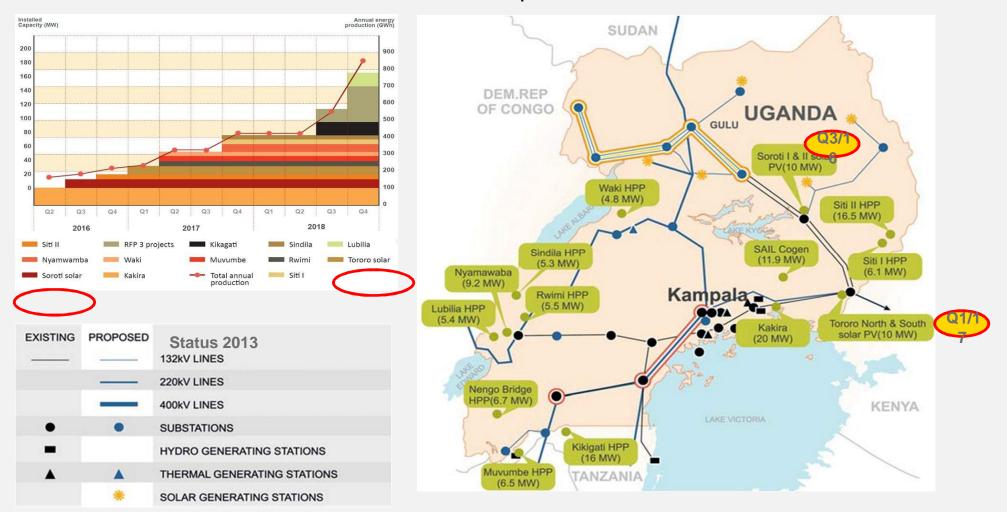
Photovoltaics can be installed easily


Project Requirements

- ✓ Area Land available
- ✓ Geometrical documents of the ground
- ✓ Grid connection available
- ✓ Signed documents for grid connection

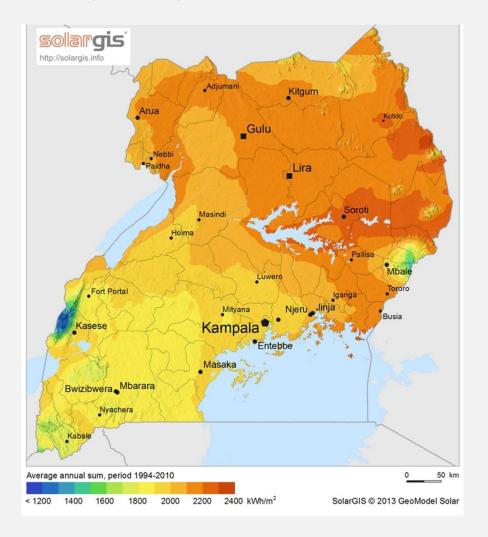
- ✓ Government documents for build a powerplant
- ✓ Transformer needed
- ✓ Power pricing

- ✓ Planning powerplant
- √ Financing model


EXAMPLE – GET FiT Uganda

E.C.E.X.A. concepts

Example – GET FiT Uganda – PV Projects PV- PROJECT EVALUATION

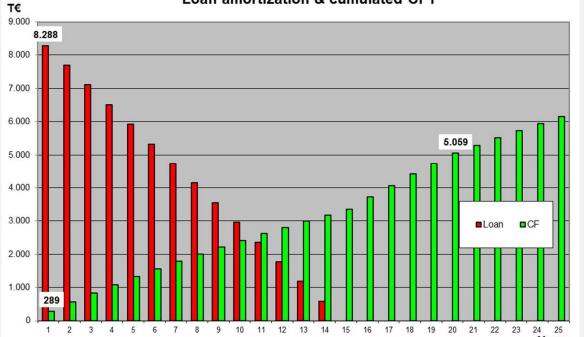

Annual Report 2015

Example – GET FiT Uganda – PV Projects

Assumptions / defined by Area PV- PROJECT EVALUATION

Standard Tarif	0,04 €/kWh
FIT	0,103 €/kWh
	- 2 % p.a.
	15 years
Spec. Energy	1.500 kWh/kwp
Size	10 MWp
System price	1,11 €/Wp
Bank finance	80 %
Interest	5 %
Period	15 years

Example – GET FiT Uganda – PV Projects


PV- PROJECT EVALUATION

Depreciation Period y Field of observation: PV only

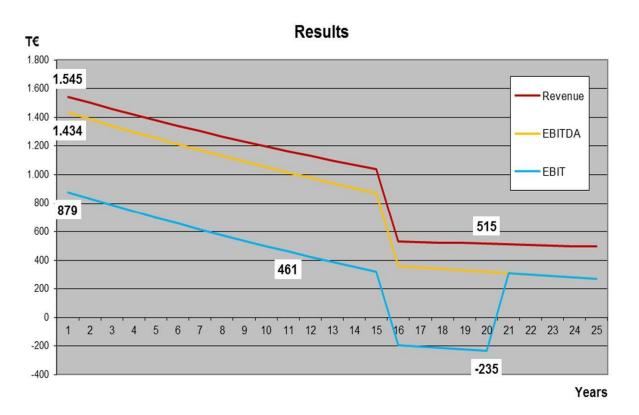
[a]

20

Loan amortization & cumulated CF1 T€ 9.000

Investment Costs	[€]	100.000
Specific Investment	[EUR/kWp]	1.110
Equity Financing	[%]	20,00%
Equity Amount	[€]	220.000
Loan Financing %	[%]	80,00%
Loan Amount €	[€]	880.000
Loan Interest rate	[%/a]	5,00%
Loan Duration	[a]	15
Grace Period	[a]	0

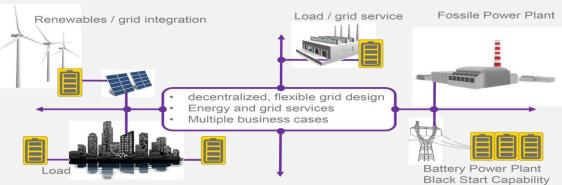
EBITDA


- Interest
- Tax
- Loan amortization

= CF1

Year 20 – cumulated CF1 = 5,06 m€

Example – GET FiT Uganda – PV Projects PV- PROJECT EVALUATION


Field of observation: PV only

Calculation Period: 25 years	total avg. p.a.		avg. Value pa / kWp	
Income €	24.292.165	1.214.608	121	
Average EBITDA €	20.245.187	1.012.259	101	
Average EBIT €	9.145.187	457.259	46	
Average EBT €	5.593.187	279.659	28	
Average EAT €	3.925.923	196.296	20	
Average Net CF €	6.145.923	307.296	31	
IRR Equity 25 a		10,13%		
IRR Equity 20 a		9,32%		
IRR Equity 15 a		5,00%		

Year 15 – End of Ioan amortization / End of FiT Year 20 – End of depreciation

PART II – Energy Storage Technology

PART II - ENERGY STORAGE SYSTEM®

Overview

Plug & Play Storage Systems

Y.Cube – P&P Energy Storage Solution

Energy Storage Systems

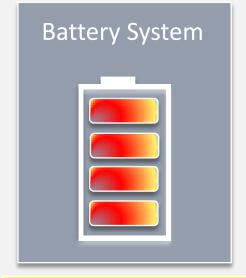
- Demand for Energy Storage Solutions
- Storage An Application for Integrated Solutions
- Storage Basic Application
- Design Services for Integration and Optimization
- Battery power plant Basic Figures
- Grid Options through battery power plant

Demand for Energy Storage Solutions

- Increasing energy demand worldwide
- Increasing renewable energy share
- Aging of conventional power plants
- Unstable grids due to renewables
- Inefficient use of renewables
- Multiples functionalities and services in parallel
- Maximize lifetime of batteries
- Optimization and automation
- Enabling hybrid systems

Hardware Software

Keyfactors are Energy and Plant Management Systems for grid integration


Storage - Application for Integrated Solutions

System Services

- ▶ Frequency control
- Secondary control
- Voltage control
- Black start capability
- Reactive power support
- Short circuit power
- Micro grid capability

Battery Parks

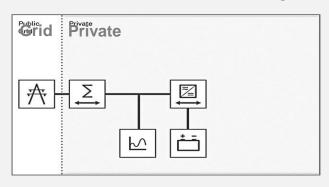
- Increased grid stability
- Avoid grid expansion costs
- Increase renewable share
- Optimize portfolios
- ▶ Reduce carbon footprint

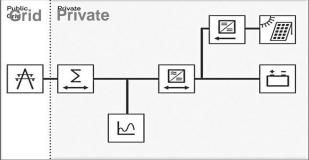
Grid stabilization –
Black start capability –
Off grid solution

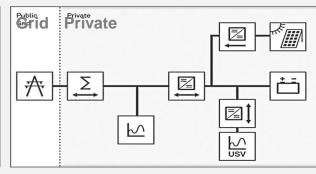
Optimized integration of renewables

Renewable Services

- Peak shaving
- Renewable integration
- Optimization of internal consumption
- Ramping


Island Systems


- Reduce energy cost
- Reduce dependency on diesel
- Reduce energy price volatility
- Increase renewable share
- Improve power quality


Storage – Basic Application

Selection of various options

- Storage as grid component
- Stabilize load profile
- Peak shaving
- Limit power consumtion from grid
- System service energy reserve
- Local storage

- Storage with PV system
- Stabilize load profile
- Peak shaving
- Limit power consumtion from grid
- Limit feed-in power
- Optimize self consumption

- Storage with PV system and UPS
- Stabilize load profile
- Peak shaving
- Limit power consumtion from grid
- Limit feed-in power
- Optimize self consumption
- Online UPS

Bidirec-

counter

tional

Charging

Uninterruptible

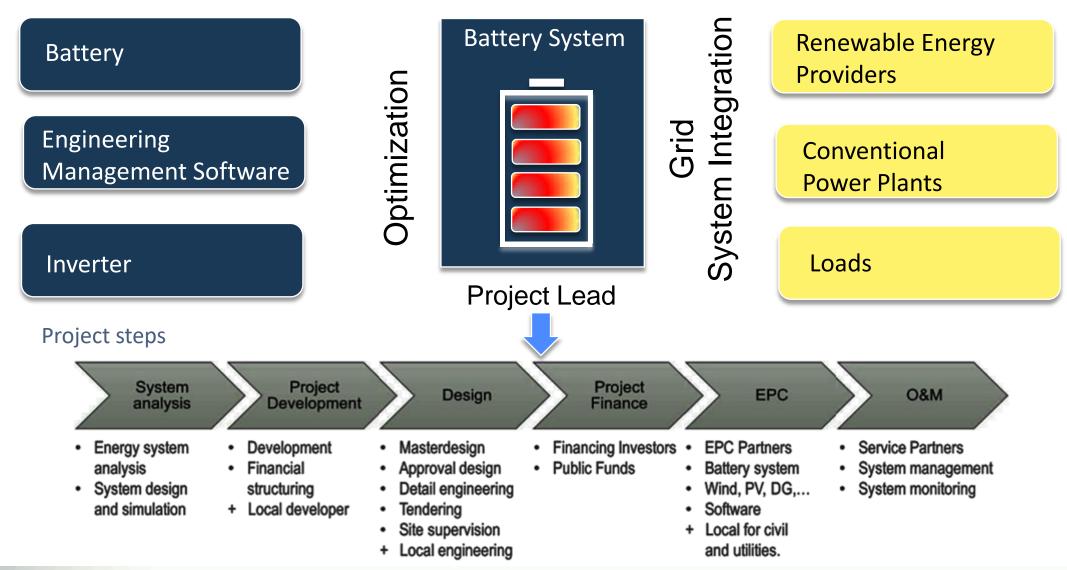
Electric car

Solar inverter

ADS-TEC battery

module

Load profile / consumption



column

Switch

Design - Services for Integration and Optimization

Battery Power Plant – Basic Figures

Field of observation: Storage only

Basic Figures

Price*

Avg. energy cost

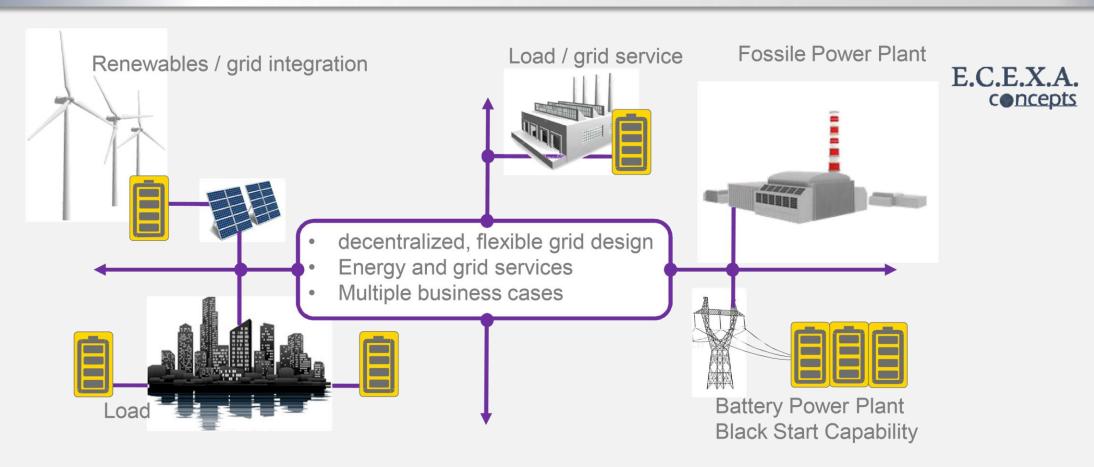
useful life

780 **T€/MWh**

6-7 ct/kWh

20 years

*) without infrastructure


Scope of performance

- Transformer, cabeling and connection to high tension line
- ▶ Foundation, construction work
- Overall design and integration

Grid – Options through Battery Power Plants

New solutions are enabled by Battery Power Plants with customized Energy Management System Software

Plug & Play Energy Storage Solutions

E.C.E.X.A. concepts

Y.Cube – Plug & Play Energy Storage

Technical Features

		Full Load 100 %		Part Load 50 %		Part Load 25 %	
Туре	Capacity kWh	Duration h	Power kW	Duration h	Power kW	Duration h	Power kW
250-222	222	0,8	250	1,6	125	3,2	63
250-555	555	2,0	250	3,9	125	7,9	63
250-887	887	3,2	250	6,2	125	12,6	63
500-555	555	1,0	500	2,0	250	3,9	125
500-887	887	1,6	500	3,2	250	6,3	125

PART III - About ECEXA

We think ENERGY differently!

We are partner for all issues of energy

- Our goals: To provide advise starting from first analysis to the implemenation
- Systemic part:To help you to save energy that is needed elsewhere
- To use energy to maximise its impact
- Key elements: efficiency, effectivitiy and quality
- Our focus is to transfer high quality environmental technology to development and transition countries

About ECEXA

- ECEXA is an Austrian Environmental Cluster with office in Baden/Vienna.
- Our highly qualified core team and an international team of leading experts consults investors and project owners with comprehensive corporate strategies
- We act as bridge builder between national governments, provinces, communities and companies of energy and environmental industries

We are partner for all issues of Renewable energy supply, Remediation, Improving Sanitation, Water & Wastewater technology, and Resources.

E.C.E.X.A. concepts

- Our expertise lies in the experience as a problem solver.
- We help communities and businesses to do everything themselves. Finance, build and operate equipment, commission and operate, and training of waste and environmental professionals.
- We contribute to create as sustainable economy, society, and environment.

Our partners provide the optimal sustainable energy solution

Photovoltaic & Energy Storage Technology

Offgrid/Microgrid PV & Storage Wind-Water-Biomass-Biogas Y.Cube – Plug and Play Energy Storage

Battery Power Plant

E.C.E.X.A. Environmental Concepts Exchange Associaton e.V., ZVR 810905603

A-2500 Baden, Erzherzogin Isabellestraße 112 – Austria

office@ecexa.at www.ecexa.at Tel. ++43(0)664 1420306